[Gmsh] 3d mesh
Kubicek Bernhard
Bernhard.Kubicek at ait.ac.at
Mon Mar 8 16:41:56 CET 2010
if you change the 3d-metshing algorithm to frontal, it complains a lot:
Info : 12022 open elements
Error : ERROR: Edge 1 - 57 multiple times in surface mesh
Error : ERROR: Edge 1 - 58 multiple times in surface mesh
....
-----------------------------------
Bernhard Kubicek
Energy Department
Electric Energy Systems
Bitte beachten Sie unsere neuen Kontaktdaten!
Please note our new contact details!
AIT Austrian Institute of Technology
Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H.
Giefinggasse 2 | 1210 Vienna | Austria
T +43(0) 50550-6258 | M +43(0) 664 6207748
bernhard.kubicek at ait.ac.at | http://www.ait.ac.at
________________________________________
From: gmsh-bounces at ace20.montefiore.ulg.ac.be [gmsh-bounces at ace20.montefiore.ulg.ac.be] On Behalf Of Alexis Blasselle [alexis.blasselle at gmail.com]
Sent: Monday, March 08, 2010 4:16 PM
To: gmsh at geuz.org
Subject: [Gmsh] 3d mesh
Hi,
I'm sorry to bother you all, but I'm new at gmsh and do not understand all the subtilities yet.
I have defined a surface that I can mesh, but do not succeed to mesh the volume. Does somebody know why ?
I thank you in advance and wish you a great day,
Best regards,
Alex
HERE IS THE CODE
// maillage d'un cube et du reseau de fibres interieur
lc1 = 0.1 ;
R = 0.05;
H = 0.25 ;
Point(100) = {0., 0., 0., lc1};
// premier cercle
Point(1) = { 0. , 0. , -H/2 , lc1 } ;
Point(2) = { R , 0. , -H/2 , lc1 } ;
Point(3) = { 0. , R , -H/2. , lc1 } ;
Point(4) = { -R , 0. , -H/2 , lc1 } ;
Point(5) = { 0. , -R , -H/2 , lc1 } ;
Circle(23) = { 2 , 1 , 3 } ;
Circle(34) = { 3 , 1 , 4 } ;
Circle(45) = { 4 , 1 , 5 } ;
Circle(52) = { 5 , 1 , 2 } ;
// deuxieme cercle
Point(6) = { 0. , 0. , H/2 , lc1 } ;
Point(7) = { R , 0. , H/2 , lc1 } ;
Point(8) = { 0. , R , H/2. , lc1 } ;
Point(9) = { -R , 0. , H/2 , lc1 } ;
Point(10) = { 0. , -R , H/2 , lc1 } ;
Circle(78) = { 7 , 6 , 8 } ;
Circle(89) = { 8 , 6 , 9 } ;
Circle(910) = { 9 , 6 , 10 } ;
Circle(107) = { 10 , 6 , 7 } ;
// troisieme cercle
Point(11) = { -H/2 , 0. , 0. , lc1 } ;
Point(12) = { -H/2 , 0. , R , lc1 } ;
Point(13) = { -H/2 , -R , 0 , lc1 } ;
Point(14) = { -H/2 , 0. , -R , lc1 } ;
Point(15) = { -H/2 , R , 0 , lc1 } ;
Circle(1213) = { 12 , 11 , 13 } ;
Circle(1314) = { 13 , 11 , 14 } ;
Circle(1415) = { 14 , 11 , 15 } ;
Circle(1512) = { 15 , 11 , 12 } ;
// quatrieme cercle
Point(16) = { H/2 , 0. , 0. , lc1 } ;
Point(17) = { H/2 , 0. , R , lc1 } ;
Point(18) = { H/2 , -R , 0 , lc1 } ;
Point(19) = { H/2 , 0. , -R , lc1 } ;
Point(20) = { H/2 , R , 0 , lc1 } ;
Circle(1718) = { 17 , 16 , 18 } ;
Circle(1819) = { 18 , 16 , 19 } ;
Circle(1920) = { 19 , 16 , 20 } ;
Circle(2017) = { 20 , 16 , 17 } ;
// cinquieme cercle
Point(21) = { 0. , -H/2 , 0. , lc1 } ;
Point(22) = { 0 , -H/2 , R , lc1 } ;
Point(23) = { -R , -H/2 , 0 , lc1 } ;
Point(24) = { 0 , -H/2 , -R , lc1 } ;
Point(25) = { R , -H/2 , 0 , lc1 } ;
Circle(2223) = { 22 , 21 , 23 } ;
Circle(2324) = { 23 , 21 , 24 } ;
Circle(2425) = { 24 , 21 , 25 } ;
Circle(2522) = { 25 , 21 , 22 } ;
// sixieme cercle
Point(26) = { 0. , H/2 , 0. , lc1 } ;
Point(27) = { 0 , H/2 , R , lc1 } ;
Point(28) = { -R , H/2 , 0 , lc1 } ;
Point(29) = { 0 , H/2 , -R , lc1 } ;
Point(30) = { R , H/2 , 0 , lc1 } ;
Circle(2728) = { 27 , 26 , 28 } ;
Circle(2829) = { 28 , 26 , 29 } ;
Circle(2930) = { 29 , 26 , 30 } ;
Circle(3027) = { 30 , 26 , 27 } ;
// les cercles de la boule , plan x = 0
Circle(192) = {19, 100, 2};
Circle(414) = {4, 100, 14};
Circle(129) = {12, 100, 9};
Circle(717) = {7, 100, 17};
// plan z = 0
Circle(2030) = {20, 100, 30};
Circle(2815) = {28, 100, 15};
Circle(1323) = {13, 100, 23};
Circle(2518) = {25, 100, 18};
// plan y = 0
Circle(329) = {3, 100, 29};
Circle(278) = {27, 100, 8};
Circle(1022) = {10, 100, 22};
Circle(245) = {24, 100, 5};
M = 2*H + H/2;
// les points de la boiboite
Point(101) = {M, M, -M, lc1};
Point(102) = {-M, M, -M, lc1};
Point(103) = {-M, -M, -M, lc1};
Point(104) = {M, -M, -M, lc1};
Point(105) = {M, M, M, lc1};
Point(106) = {-M, M, M, lc1};
Point(107) = {-M, -M, M, lc1};
Point(108) = {M, -M, M, lc1};
// carre du bas
Line(101102) = {101, 102};
Line(102103) = {102, 103};
Line(103104) = {103, 104};
Line(104101) = {104, 101};
// carre du haut
Line(105106) = {105, 106};
Line(106107) = {106, 107};
Line(107108) = {107, 108};
Line(108105) = {108, 105};
// les aretes
Line(101105) = {101, 105};
Line(102106) = {102, 106};
Line(103107) = {103, 107};
Line(104108) = {104, 108};
// les line loop des faces du cube
Line Loop(1234) = {101102, 102103, 103104, 104101};
Plane Surface(1234) = {-1234};
Line Loop(1265) = {101102, 102106, -105106, -101105};
Plane Surface(1265) = {1265};
Line Loop(2376) = {102103, 103107, -106107, -102106};
Plane Surface(2376) = {2376};
Line Loop(5678) = {105106, 106107, 107108, 108105};
Plane Surface(5678) = {5678};
Line Loop(3487) = {103104, 104108, -107108, -103107};
Plane Surface(3487) = {3487};
Line Loop(4158) = {104101, 101105, -108105, -104108};
Plane Surface(4158) = {4158};
// extrusions
out23[] = Extrude {0,0,-2*H} { Line{23}; };
out34[] = Extrude {0,0,-2*H} { Line{34}; };
out45[] = Extrude {0,0,-2*H} { Line{45}; };
out52[] = Extrude {0,0,-2*H} { Line{52}; };
Line Loop (1) = {out23[0], out34[0], out45[0], out52[0] };
out78[] = Extrude {0,0,2*H} { Line{78}; };
out89[] = Extrude {0,0,2*H} { Line{89}; };
out910[] = Extrude {0,0,2*H} { Line{910}; };
out107[] = Extrude {0,0,2*H} { Line{107}; };
Line Loop (2) = {out78[0], out89[0], out910[0], out107[0] };
out1213[] = Extrude {-2*H,0,0} { Line{1213}; };
out1314[] = Extrude {-2*H,0,0} { Line{1314}; };
out1415[] = Extrude {-2*H,0,0} { Line{1415}; };
out1512[] = Extrude {-2*H,0,0} { Line{1512}; };
Line Loop (3) = {out1213[0], out1314[0], out1415[0], out1512[0] };
out1718[] = Extrude {2*H,0,0} { Line{1718}; };
out1819[] = Extrude {2*H,0,0} { Line{1819}; };
out1920[] = Extrude {2*H,0,0} { Line{1920}; };
out2017[] = Extrude {2*H,0,0} { Line{2017}; };
Line Loop (4) = {out1718[0], out1819[0], out1920[0], out2017[0] };
out2223[] = Extrude {0,-2*H,0} { Line{2223}; };
out2324[] = Extrude {0,-2*H,0} { Line{2324}; };
out2425[] = Extrude {0,-2*H,0} { Line{2425}; };
out2522[] = Extrude {0,-2*H,0} { Line{2522}; };
Line Loop (5) = {out2223[0], out2324[0], out2425[0], out2522[0] };
out2728[] = Extrude {0,2*H,0} { Line{2728}; };
out2829[] = Extrude {0,2*H,0} { Line{2829}; };
out2930[] = Extrude {0,2*H,0} { Line{2930}; };
out3027[] = Extrude {0,2*H,0} { Line{3027}; };
Line Loop (6) = {out2728[0], out2829[0], out2930[0], out3027[0] };
// les surfaces
Plane Surface(1) = {1};
Plane Surface(2) = {2};
Plane Surface(3) = {3};
Plane Surface(4) = {4};
Plane Surface(5) = {5};
Plane Surface(6) = {6};
Circle(208) = {20, 100, 8};
Line Loop(7) = {717, -2017, 208, -78};
Ruled Surface(7) = {7};
Line Loop(8) = {-208, 2030, 3027, 278};
Ruled Surface(8) = {8};
Circle(257) = {25, 100, 7};
Line Loop(9) = {-107, 1022, -2522, 257};
Ruled Surface(9) = {9};
Line Loop(10) = {-257, 2518, -1718, -717};
Ruled Surface(10) = {10};
Circle(302) = {30, 100, 2};
Line Loop(11) = {-302, -2030, -1920, 192};
Ruled Surface(11) = {11};
Line Loop(12) = {329, 2930, 302, 23};
Ruled Surface(12) = {12};
Circle(185) = {18, 100, 5};
Line Loop(13) = {-192, -1819, 185, 52};
Ruled Surface(13) = {13};
Line Loop(14) = {-2518, -2425, 245, -185};
Ruled Surface(14) = {14};
Circle(239) = {23, 100, 9};
Line Loop(15) = {-129, 1213, 1323, 239};
Ruled Surface(15) = {15};
Line Loop(16) = {2223, 239, 910, 1022};
Ruled Surface(16) = {16};
Circle(2914) = {29, 100, 14};
Line Loop(17) = {-2914, -329, 34, 414};
Ruled Surface(17) = {17};
Line Loop(18) = {-2815, 2829, 2914, 1415};
Ruled Surface(18) = {18};
Circle(234) = {23, 100, 4};
Line Loop(19) = {234, 45, -245, -2324};
Ruled Surface(19) = {19};
Line Loop(20) = {-1323, 1314, -414, -234};
Ruled Surface(20) = {20};
Circle(289) = {28, 100, 9};
Line Loop(21) = {-89, -278, 2728, 289};
Ruled Surface(21) = {21};
Line Loop(22) = {2815, 1512, 129, -289};
Ruled Surface(22) = {22};
Surface Loop(23) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22};
//Volume(23) = {23};
// les faces du cube
Surface Loop(24) = {1234, 1265, 2376, 5678, 3487, 4158};
Volume(24) = {24, -23};
--
http://www.ann.jussieu.fr/~blasselle/