[Gmsh] 3D Meshing of Rotated and Translated Surfaces/Volumes
David Colignon
David.Colignon at ulg.ac.be
Tue Dec 20 09:31:13 CET 2005
Hi,
I got the same result as you. If you look carefully at the output of
gmsh, you will see two errors messages like
Error : Missing edge without any intersection (59,-18,-44.25)
(59,-18,-35.4)
Error : Missing edge without any intersection (59,-18,-44.25)
(59,-18,-35.4)
and some warning messages like
Warning : *Unrecoverable* face (0 <--> 1=2*(3-1)-3)
Gmsh has some problems to mesh the 4 concerned volumes.
You should try different 2D and/or 3D algorithms and also try to
slightly change the characteristic length of some points ...
Cheers,
Dave
David Colignon, Ph.D.
ELAP - Service d'Electricité Appliquée
Institut Montefiore B28
Université de Liège
4000 Liège - BELGIQUE
Tél: +32 (0)4 366 37 32
Fax: +32 (0)4 366 29 10
http://elap.montefiore.ulg.ac.be
Tirado, Cesar wrote:
> To Whom It May Concern:
>
>
>
> I would like to ask you what am I doing wrong when creating a 3D Mesh.
> I am attaching the text file that I use for input to GMSH. Once, read
> the file by GMSH, a model can be seen consisting on three sections, with
> three layers (volumes) each. This model is created as follows: a first
> section is created, located on the left hand side, and then is
> replicated twice: the middle one is the first section rotated, the right
> hand side one is the first section translated to the point where it lies
> next to the middle one. When meshing the whole model, the mesh
> generator creates a 3D mesh only for the first section (the left hand
> side one), as well as for the top layer of the other two sections.
> However, in the other layers of these sections, only a 2D mesh is
> generated. I’ve created further sections (a third and a fourth, a fifth
> and a sixth, always in pairs) and setting them next to the second and
> third sections (to the right of the last one), by translating the second
> and third sections (not the first one); and I find that the 3D mesh is
> performed ok on the newly created sections, while leaving the second and
> third with a 2D mesh only. I wonder if there is a problem in the
> compatibility of the sharing faces of the volumes. Why is that so? Thanks…
>
>
>
> Cesar Tirado
>
> Center for Transportation Infrastructure Systems
>
> University of Texas at El Paso
>
>
> ------------------------------------------------------------------------
>
> Point(1) = { 0.00000000, 0.00000000, 0.00000000, 0.76000000};
> Point(2) = { 5.90000000, 0.00000000, 0.00000000, 0.98254490};
> Point(3) = { 11.80000000, 0.00000000, 0.00000000, 1.38945204};
> Point(4) = { 17.70000000, 0.00000000, 0.00000000, 1.91637723};
> Point(5) = { 23.60000000, 0.00000000, 0.00000000, 2.54035922};
> Point(6) = { 29.50000000, 0.00000000, 0.00000000, 3.24812765};
> Point(7) = { 29.50000000, 0.00000000, -8.85000000, 3.41425431};
> Point(8) = { 29.50000000, 0.00000000, -17.70000000, 3.89347936};
> Point(9) = { 29.50000000, 0.00000000, -26.55000000, 4.64267991};
> Point(10) = { 29.50000000, 0.00000000, -35.40000000, 5.61752480};
> Point(11) = { 29.50000000, 0.00000000, -44.25000000, 6.78261606};
> Point(12) = { 23.60000000, 0.00000000, -44.25000000, 6.27500664};
> Point(13) = { 17.70000000, 0.00000000, -44.25000000, 5.86920158};
> Point(14) = { 11.80000000, 0.00000000, -44.25000000, 5.57266286};
> Point(15) = { 5.90000000, 0.00000000, -44.25000000, 5.39179435};
> Point(16) = { 0.00000000, 0.00000000, -44.25000000, 5.33098237};
> Point(17) = { 0.00000000, 0.00000000, -35.40000000, 4.03072873};
> Point(18) = { 0.00000000, 0.00000000, -26.55000000, 2.88440063};
> Point(19) = { 0.00000000, 0.00000000, -17.70000000, 1.91637723};
> Point(20) = { 0.00000000, 0.00000000, -8.85000000, 1.16884109};
> Point(21) = { 0.00000000, -6.00000000, 0.00000000, 0.98822673};
> Point(22) = { 5.90000000, -6.00000000, 0.00000000, 1.13906229};
> Point(23) = { 11.80000000, -6.00000000, 0.00000000, 1.50793622};
> Point(24) = { 17.70000000, -6.00000000, 0.00000000, 2.01466923};
> Point(25) = { 23.60000000, -6.00000000, 0.00000000, 2.62598729};
> Point(26) = { 29.50000000, -6.00000000, 0.00000000, 3.32493077};
> Point(27) = { 29.50000000, -6.00000000, -8.85000000, 3.48945167};
> Point(28) = { 29.50000000, -6.00000000, -17.70000000, 3.96469476};
> Point(29) = { 29.50000000, -6.00000000, -26.55000000, 4.70904534};
> Point(30) = { 29.50000000, -6.00000000, -35.40000000, 5.67916018};
> Point(31) = { 29.50000000, -6.00000000, -44.25000000, 6.84001894};
> Point(32) = { 23.60000000, -6.00000000, -44.25000000, 6.33410763};
> Point(33) = { 17.70000000, -6.00000000, -44.25000000, 5.92981609};
> Point(34) = { 11.80000000, -6.00000000, -44.25000000, 5.63448754};
> Point(35) = { 5.90000000, -6.00000000, -44.25000000, 5.45440657};
> Point(36) = { 0.00000000, -6.00000000, -44.25000000, 5.39386853};
> Point(37) = { 0.00000000, -6.00000000, -35.40000000, 4.10094826};
> Point(38) = { 0.00000000, -6.00000000, -26.55000000, 2.96526319};
> Point(39) = { 0.00000000, -6.00000000, -17.70000000, 2.01466923};
> Point(40) = { 0.00000000, -6.00000000, -8.85000000, 1.30292322};
> Point(41) = { 0.00000000, -18.00000000, 0.00000000, 1.94590088};
> Point(42) = { 5.90000000, -18.00000000, 0.00000000, 2.04023011};
> Point(43) = { 11.80000000, -18.00000000, 0.00000000, 2.31057998};
> Point(44) = { 17.70000000, -18.00000000, 0.00000000, 2.72966542};
> Point(45) = { 23.60000000, -18.00000000, 0.00000000, 3.27105818};
> Point(46) = { 29.50000000, -18.00000000, 0.00000000, 3.91472183};
> Point(47) = { 29.50000000, -18.00000000, -8.85000000, 4.06865537};
> Point(48) = { 29.50000000, -18.00000000, -17.70000000, 4.51700062};
> Point(49) = { 29.50000000, -18.00000000, -26.55000000, 5.22744807};
> Point(50) = { 29.50000000, -18.00000000, -35.40000000, 6.16343188};
> Point(51) = { 29.50000000, -18.00000000, -44.25000000, 7.29298380};
> Point(52) = { 23.60000000, -18.00000000, -44.25000000, 6.79971240};
> Point(53) = { 17.70000000, -18.00000000, -44.25000000, 6.40659835};
> Point(54) = { 11.80000000, -18.00000000, -44.25000000, 6.12014356};
> Point(55) = { 5.90000000, -18.00000000, -44.25000000, 5.94580562};
> Point(56) = { 0.00000000, -18.00000000, -44.25000000, 5.88725933};
> Point(57) = { 0.00000000, -18.00000000, -35.40000000, 4.64639062};
> Point(58) = { 0.00000000, -18.00000000, -26.55000000, 3.58111182};
> Point(59) = { 0.00000000, -18.00000000, -17.70000000, 2.72966542};
> Point(60) = { 0.00000000, -18.00000000, -8.85000000, 2.15498769};
> Point(61) = { 0.00000000, -58.00000000, 0.00000000, 7.61932884};
> Point(62) = { 5.90000000, -58.00000000, 0.00000000, 7.67249450};
> Point(63) = { 11.80000000, -58.00000000, 0.00000000, 7.83118259};
> Point(64) = { 17.70000000, -58.00000000, 0.00000000, 8.09306516};
> Point(65) = { 23.60000000, -58.00000000, 0.00000000, 8.45456269};
> Point(66) = { 29.50000000, -58.00000000, 0.00000000, 8.91120856};
> Point(67) = { 29.50000000, -58.00000000, -8.85000000, 9.02403105};
> Point(68) = { 29.50000000, -58.00000000, -17.70000000, 9.35947680};
> Point(69) = { 29.50000000, -58.00000000, -26.55000000, 9.90911233};
> Point(70) = { 29.50000000, -58.00000000, -35.40000000, 10.66068381};
> Point(71) = { 29.50000000, -58.00000000, -44.25000000, 11.60000000};
> Point(72) = { 23.60000000, -58.00000000, -44.25000000, 11.18601811};
> Point(73) = { 17.70000000, -58.00000000, -44.25000000, 10.86021105};
> Point(74) = { 11.80000000, -58.00000000, -44.25000000, 10.62533433};
> Point(75) = { 5.90000000, -58.00000000, -44.25000000, 10.48351113};
> Point(76) = { 0.00000000, -58.00000000, -44.25000000, 10.43608358};
> Point(77) = { 0.00000000, -58.00000000, -35.40000000, 9.45802851};
> Point(78) = { 0.00000000, -58.00000000, -26.55000000, 8.67129531};
> Point(79) = { 0.00000000, -58.00000000, -17.70000000, 8.09306516};
> Point(80) = { 0.00000000, -58.00000000, -8.85000000, 7.73876059};
> Line(1) = { 1, 2};
> Line(2) = { 2, 3};
> Line(3) = { 3, 4};
> Line(4) = { 4, 5};
> Line(5) = { 5, 6};
> Line(6) = { 6, 7};
> Line(7) = { 7, 8};
> Line(8) = { 8, 9};
> Line(9) = { 9, 10};
> Line(10) = { 10, 11};
> Line(11) = { 11, 12};
> Line(12) = { 12, 13};
> Line(13) = { 13, 14};
> Line(14) = { 14, 15};
> Line(15) = { 15, 16};
> Line(16) = { 16, 17};
> Line(17) = { 17, 18};
> Line(18) = { 18, 19};
> Line(19) = { 19, 20};
> Line(20) = { 20, 1};
> Line(21) = { 21, 22};
> Line(22) = { 22, 23};
> Line(23) = { 23, 24};
> Line(24) = { 24, 25};
> Line(25) = { 25, 26};
> Line(26) = { 26, 27};
> Line(27) = { 27, 28};
> Line(28) = { 28, 29};
> Line(29) = { 29, 30};
> Line(30) = { 30, 31};
> Line(31) = { 31, 32};
> Line(32) = { 32, 33};
> Line(33) = { 33, 34};
> Line(34) = { 34, 35};
> Line(35) = { 35, 36};
> Line(36) = { 36, 37};
> Line(37) = { 37, 38};
> Line(38) = { 38, 39};
> Line(39) = { 39, 40};
> Line(40) = { 40, 21};
> Line(41) = { 41, 42};
> Line(42) = { 42, 43};
> Line(43) = { 43, 44};
> Line(44) = { 44, 45};
> Line(45) = { 45, 46};
> Line(46) = { 46, 47};
> Line(47) = { 47, 48};
> Line(48) = { 48, 49};
> Line(49) = { 49, 50};
> Line(50) = { 50, 51};
> Line(51) = { 51, 52};
> Line(52) = { 52, 53};
> Line(53) = { 53, 54};
> Line(54) = { 54, 55};
> Line(55) = { 55, 56};
> Line(56) = { 56, 57};
> Line(57) = { 57, 58};
> Line(58) = { 58, 59};
> Line(59) = { 59, 60};
> Line(60) = { 60, 41};
> Line(61) = { 61, 62};
> Line(62) = { 62, 63};
> Line(63) = { 63, 64};
> Line(64) = { 64, 65};
> Line(65) = { 65, 66};
> Line(66) = { 66, 67};
> Line(67) = { 67, 68};
> Line(68) = { 68, 69};
> Line(69) = { 69, 70};
> Line(70) = { 70, 71};
> Line(71) = { 71, 72};
> Line(72) = { 72, 73};
> Line(73) = { 73, 74};
> Line(74) = { 74, 75};
> Line(75) = { 75, 76};
> Line(76) = { 76, 77};
> Line(77) = { 77, 78};
> Line(78) = { 78, 79};
> Line(79) = { 79, 80};
> Line(80) = { 80, 61};
> Line(81) = { 1, 21};
> Line(82) = { 6, 26};
> Line(83) = { 11, 31};
> Line(84) = { 16, 36};
> Line(85) = { 21, 41};
> Line(86) = { 26, 46};
> Line(87) = { 31, 51};
> Line(88) = { 36, 56};
> Line(89) = { 41, 61};
> Line(90) = { 46, 66};
> Line(91) = { 51, 71};
> Line(92) = { 56, 76};
> Line Loop(1) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
> Plane Surface(1) = { 1};
> S111[] = Rotate{ {0,0,1},{ 2.950000e+001, 0,0},Pi} {Duplicata{Surface{ 1};}};
> S121[] = Translate { 59,0,0} {Duplicata{Surface{ 1};}};
> Line Loop(2) = { 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40};
> Plane Surface(2) = { 2};
> S112[] = Rotate{ {0,0,1},{ 2.950000e+001,-6,0},Pi} {Duplicata{Surface{ 2};}};
> S122[] = Translate { 59,0,0} {Duplicata{Surface{ 2};}};
> Line Loop(3) = { 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60};
> Plane Surface(3) = { 3};
> S113[] = Rotate{ {0,0,1},{ 2.950000e+001,-18,0},Pi} {Duplicata{Surface{ 3};}};
> S123[] = Translate { 59,0,0} {Duplicata{Surface{ 3};}};
> Line Loop(4) = { 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80};
> Plane Surface(4) = { 4};
> S114[] = Rotate{ {0,0,1},{ 2.950000e+001,-58,0},Pi} {Duplicata{Surface{ 4};}};
> S124[] = Translate { 59,0,0} {Duplicata{Surface{ 4};}};
> Line Loop(5) = { 81, 21, 22, 23, 24, 25, -82, -5, -4, -3, -2, -1};
> Plane Surface(5) = { 5};
> Line Loop(6) = { 82, 26, 27, 28, 29, 30, -83, -10, -9, -8, -7, -6};
> Plane Surface(6) = { 6};
> Line Loop(7) = { 83, 31, 32, 33, 34, 35, -84, -15, -14, -13, -12, -11};
> Plane Surface(7) = { 7};
> Line Loop(8) = { 84, 36, 37, 38, 39, 40, -81, -20, -19, -18, -17, -16};
> Plane Surface(8) = { 8};
> Line Loop(9) = { 85, 41, 42, 43, 44, 45, -86, -25, -24, -23, -22, -21};
> Plane Surface(9) = { 9};
> Line Loop(10) = { 86, 46, 47, 48, 49, 50, -87, -30, -29, -28, -27, -26};
> Plane Surface(10) = { 10};
> Line Loop(11) = { 87, 51, 52, 53, 54, 55, -88, -35, -34, -33, -32, -31};
> Plane Surface(11) = { 11};
> Line Loop(12) = { 88, 56, 57, 58, 59, 60, -85, -40, -39, -38, -37, -36};
> Plane Surface(12) = { 12};
> Line Loop(13) = { 89, 61, 62, 63, 64, 65, -90, -45, -44, -43, -42, -41};
> Plane Surface(13) = { 13};
> Line Loop(14) = { 90, 66, 67, 68, 69, 70, -91, -50, -49, -48, -47, -46};
> Plane Surface(14) = { 14};
> Line Loop(15) = { 91, 71, 72, 73, 74, 75, -92, -55, -54, -53, -52, -51};
> Plane Surface(15) = { 15};
> Line Loop(16) = { 92, 76, 77, 78, 79, 80, -89, -60, -59, -58, -57, -56};
> Plane Surface(16) = { 16};
> S115[] = Rotate{ {0,1,0},{2.950000e+001,0, 0},Pi} {Duplicata{Surface{ 5};}};
> S116[] = 6;
> S117[] = Rotate{ {0,1,0},{2.950000e+001,0,-4.425000e+001},Pi} {Duplicata{Surface{ 7};}};
> S118[] = Translate { 59,0,0} {Duplicata{Surface{8};}};
> S119[] = Rotate{ {0,1,0},{2.950000e+001,0, 0},Pi} {Duplicata{Surface{ 9};}};
> S1110[] = 10;
> S1111[] = Rotate{ {0,1,0},{2.950000e+001,0,-4.425000e+001},Pi} {Duplicata{Surface{ 11};}};
> S1112[] = Translate { 59,0,0} {Duplicata{Surface{12};}};
> S1113[] = Rotate{ {0,1,0},{2.950000e+001,0, 0},Pi} {Duplicata{Surface{ 13};}};
> S1114[] = 14;
> S1115[] = Rotate{ {0,1,0},{2.950000e+001,0,-4.425000e+001},Pi} {Duplicata{Surface{ 15};}};
> S1116[] = Translate { 59,0,0} {Duplicata{Surface{16};}};
> S125[] = Translate {59,0,0} {Duplicata{Surface{5};}};
> S126[] = Translate {59,0,0} {Duplicata{Surface{6};}};
> S127[] = Translate {59,0,0} {Duplicata{Surface{7};}};
> S128[] = S118[];
> S129[] = Translate {59,0,0} {Duplicata{Surface{9};}};
> S1210[] = Translate {59,0,0} {Duplicata{Surface{10};}};
> S1211[] = Translate {59,0,0} {Duplicata{Surface{11};}};
> S1212[] = S1112[];
> S1213[] = Translate {59,0,0} {Duplicata{Surface{13};}};
> S1214[] = Translate {59,0,0} {Duplicata{Surface{14};}};
> S1215[] = Translate {59,0,0} {Duplicata{Surface{15};}};
> S1216[] = S1116[];
> Surface Loop(1) = { 5, 6, 7, 8, 1, -2};
> Volume(1) = { 1};
> Physical Volume(1) = { 1};
> Surface Loop(4) = { -S115[], -S116[], -S117[], -S118[], -S111[], S112[]};
> Volume(4) = { 4};
> Physical Volume(4) = { 4};
> Surface Loop(7) = { S125[], S126[], S127[], S128[], S121[], -S122[]};
> Volume(7) = { 7};
> Physical Volume(7) = { 7};
> Surface Loop(2) = { 9, 10, 11, 12, 2, -3};
> Volume(2) = { 2};
> Physical Volume(2) = { 2};
> Surface Loop(5) = { -S119[], -S1110[], -S1111[], -S1112[], -S112[], S113[]};
> Volume(5) = { 5};
> Physical Volume(5) = { 5};
> Surface Loop(8) = { S129[], S1210[], S1211[], S1212[], S122[], -S123[]};
> Volume(8) = { 8};
> Physical Volume(8) = { 8};
> Surface Loop(3) = { 13, 14, 15, 16, 3, -4};
> Volume(3) = { 3};
> Physical Volume(3) = { 3};
> Surface Loop(6) = { -S1113[], -S1114[], -S1115[], -S1116[], -S113[], S114[]};
> Volume(6) = { 6};
> Physical Volume(6) = { 6};
> Surface Loop(9) = { S1213[], S1214[], S1215[], S1216[], S123[], -S124[]};
> Volume(9) = { 9};
> Physical Volume(9) = { 9};
>
>
> ------------------------------------------------------------------------
>
> _______________________________________________
> gmsh mailing list
> gmsh at geuz.org
> http://www.geuz.org/mailman/listinfo/gmsh