<div dir="ltr"><div class="gmail_default" style="color:rgb(0,0,0)">I just noticed this email in the mailing list: <a href="http://www.geuz.org/pipermail/getdp/2001/000231.html">http://www.geuz.org/pipermail/getdp/2001/000231.html</a><br></div><div class="gmail_default" style="color:rgb(0,0,0)">However, using<br><span style="font-family:monospace,monospace"> Galerkin { [ -sigma[]*SquNorm[Dt[{a}]+{ur}] , {t} ];<br> In Omega_c2; Integration CurlCurl; Jacobian Vol; }</span><br></div><div class="gmail_default" style="color:rgb(0,0,0)">obviously does not work either since getdp returns the error "Missing solution for time derivative computation" for my thermal problem.<br><br></div><div class="gmail_default" style="color:rgb(0,0,0)">I don't know if that should work with complex values though.<br><br></div><div class="gmail_default" style="color:rgb(0,0,0)">Best regards<br></div><div class="gmail_extra"><br clear="all"><div><div class="gmail_signature"><div dir="ltr"><div>--<br>Gilles VOGT<br></div></div></div></div>
<br><div class="gmail_quote">2015-03-20 15:49 GMT+01:00 Gilles Vogt <span dir="ltr"><<a href="mailto:vogtgilles@gmail.com" target="_blank">vogtgilles@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="color:rgb(0,0,0)">I did not find a clear solution, but using GmshRead is a good workaround for this problem. I solve the magnetic problem, post-process it, then load the ohmic losses map as volumetric power in the dynamic thermal simulation.<br><br></div><div style="color:rgb(0,0,0)">However, the issue is not solved per se : I think it might be an issue for real magneto-thermal problems (where the permeability is a function of temperature).<br><br></div><div style="color:rgb(0,0,0)">Best regards,<br></div></div><div class="gmail_extra"><br clear="all"><div><div><div dir="ltr"><div>--<br>Gilles VOGT<br></div>Ingénieur généraliste de l'École Centrale de Lille, docteur en génie électrique<br><div><a href="tel:%2B33%20%280%296%2025%2098%2072%2002" value="+33625987202" target="_blank">+33 (0)6 25 98 72 02</a></div></div></div></div><div><div class="h5">
<br><div class="gmail_quote">2015-03-20 11:53 GMT+01:00 Gilles Vogt <span dir="ltr"><<a href="mailto:vogtgilles@gmail.com" target="_blank">vogtgilles@gmail.com</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div style="color:rgb(0,0,0)">Hi,<br><br></div><div style="color:rgb(0,0,0)">I am still working on induction heating 2D coupled problems. My input file is written at the end of this email. As you can see, I solve in complex values the magnetic problem, and use the power from induced currents as heating power.<br></div><div style="color:rgb(0,0,0)">The power is calculated from this code :<br><span style="font-family:monospace,monospace">-sigma[]*((Re[{ur}]-Im[w*{a}])*(Re[{ur}]-Im[w*{a}]) + (Im[{ur}]+Re[w*{a}])*(Im[{ur}]+Re[w*{a}])) </span><br></div><div style="color:rgb(0,0,0)">Where ur is the scalar electric potential, w=2*pi*f, a the magnetic vector potential.<br>It outputs the correct value when post-processed inside a "<span style="font-family:monospace,monospace">NameOfFormulation Magnetodynamics_av_2D</span>" section. However, when post-processed inside a "<span style="font-family:monospace,monospace">NameOfFormulation Thermics</span>" section, it outputs only the power from imaginary currents.<br><br></div><div style="color:rgb(0,0,0)">A full model is attached to this email. You can check that :<br></div><div style="color:rgb(0,0,0)">therm_OhmicL and therm_OhmicL2 give the same results<br></div><div style="color:rgb(0,0,0)">therm_qv gives different results (the formula is the same as therm_OhmicL2 but within the coupled problem).<br><br></div><div style="color:rgb(0,0,0)">I have been able to confirm that this problem also occurs while solving the problem (the input power is only relative to the imaginary part of currents), and not only in post-pro.<br><br></div><div style="color:rgb(0,0,0)">My guess is : in the time-step model, real and imaginary part of the complex fields are seen as t0 and t1 steps, and only t1 is considered.<br></div><div style="color:rgb(0,0,0)"><br></div><div style="color:rgb(0,0,0)">I hope someone can confirm the issue, or give me a workaround.<br><br></div><div style="color:rgb(0,0,0)">Best regards,<br></div><div style="color:rgb(0,0,0)"><br><br></div><div style="color:rgb(0,0,0)">Here is my .pro file :<br><span style="font-family:monospace,monospace">Formulation {<br> { Name Magnetodynamics_av_2D; Type FemEquation;<br> Quantity {<br> { Name a ; Type Local ; NameOfSpace Hcurl_a_Mag_2D; }<br> { Name ur; Type Local ; NameOfSpace Hregion_u_Mag_2D; }<br> { Name I ; Type Global; NameOfSpace Hregion_u_Mag_2D [I]; }<br> { Name U ; Type Global; NameOfSpace Hregion_u_Mag_2D [U]; }<br> { Name js; Type Local ; NameOfSpace Hregion_j_Mag_2D; }<br> }<br> Equation {<br> Galerkin { [ nu[{d a}] * Dof{d a} , {d a} ]; In Domain_Mag;<br> Jacobian Vol; Integration CurlCurl; }<br> <br> Galerkin { JacNL [ dhdb_NL[{d a}] * Dof{d a} , {d a} ] ;<br> In DomainNL ; Jacobian Vol ; Integration I1 ; }<br><br> Galerkin { DtDof [ sigma[] * Dof{a} , {a} ]; In DomainC_Mag;<br> Jacobian Vol; Integration CurlCurl; }<br> <br> Galerkin { [ sigma[] * Dof{ur} , {a} ]; In DomainC_Mag;<br> Jacobian Vol; Integration CurlCurl; }<br><br> Galerkin { [ - Dof{js} , {a} ]; In DomainS_Mag;<br> Jacobian Vol;<br> Integration CurlCurl; }<br><br> Galerkin { DtDof [ sigma[] * Dof{a} , {ur} ]; In DomainC_Mag;<br> Jacobian Vol; Integration CurlCurl; }<br> Galerkin { [ sigma[] * Dof{ur} , {ur} ]; In DomainC_Mag;<br> Jacobian Vol; Integration CurlCurl; }<br> // GlobalTerm { [ Dof{I} , {U} ]; In DomainC_Mag; }<br> }<br> }<br><br> <br> { Name TheDyn; Type FemEquation;<br> Quantity {<br> { Name t; Type Local; NameOfSpace Hgrad_T; }<br> { Name a ; Type Local ; NameOfSpace Hcurl_a_Mag_2D; }<br> { Name ur; Type Local ; NameOfSpace Hregion_u_Mag_2D; }<br> }<br> Equation {<br> Galerkin { [ lambda[] * Dof{d t} , {d t} ]; In Omega_c; Integration CurlCurl; Jacobian Vol; }<br> <br> Galerkin { DtDof [ rho[]*c[] * Dof{t} , {t} ]; In Omega_c; Integration CurlCurl; Jacobian Vol; }<br> <br> Galerkin { [ -sigma[]*((Re[{ur}]-Im[w*{a}])*(Re[{ur}]-Im[w*{a}]) + (Im[{ur}]+Re[w*{a}])*(Im[{ur}]+Re[w*{a}])) , {t} ];<br> In Omega_c2; Integration CurlCurl; Jacobian Vol; }<br> <br> Galerkin { [ -qVol[] , {t} ];<br> In DomainS_Mag; Integration CurlCurl; Jacobian Vol; }<br> <br> Galerkin { [ hS[]*Dof{t} , {t} ] ;In BdExt; Jacobian Sur ; Integration CurlCurl ; }<br> <br> Galerkin { [ -hS[]*AmbT[] , {t} ] ; In BdExt ; Jacobian Sur ; Integration CurlCurl ; }<br> }<br> }<br>}<br><br>Resolution {<br> { Name TheDyn;<br> System {<br> { Name T; NameOfFormulation TheDyn; }<br> { Name B; NameOfFormulation Magnetodynamics_av_2D;<br> Type ComplexValue; Frequency Freq;}<br> }<br> Operation {<br> InitSolution[B];<br> IterativeLoop[Nb_max_iter, stop_criterion, relaxation_factor]{GenerateJac[B] ; SolveJac[B] ;}<br> SaveSolution[B];<br> InitSolution[T]; SaveSolution[T];<br> TimeLoopTheta[time0t, time1t, dtimet, theta] {<br> Generate[T]; Solve[T];<br> SaveSolution[T];<br> }<br> }<br> }<br><br>}</span><br><br clear="all"></div><div><div><div dir="ltr"><div>--<br>Gilles VOGT<br></div></div></div></div>
</div>
</blockquote></div><br></div></div></div>
</blockquote></div><br></div></div>