<html><body><div style="font-family: times new roman, new york, times, serif; font-size: 12pt; color: #000000"><div>Dear all,<br></div><div><br></div><div>The question is the following, how does the Integral function computes the integral on Jacobian VolAxi and Jacobian Vol?<br></div><div><br></div><div>I have implemented a 2D axisymmetric magnetic problem (a solenoid). While I tried to compute the area of the solenoidal coil on the Jacobian definition VolAxi in the post-processing stage, it comes out wrong. However, if I define Jacobian Vol, the area comes out right. It should be mentioned that if I use either the definition of the Jacobian Vol or VolAxi in the Formulation to integrate the current density, the results do not seem to be affect. I am puzzled!!<br></div><div><br></div><div><br></div><div> {<br> Name jacobianNDRegionZ;<br> Case<br> {<br> {<br> Region All;<br> Jacobian Vol;<br> }<br> }<br> }</div><div>{<br> Name jacobianNDRegion;<br> Case<br> {<br> {<br> Region infiniteBoundaryDomain;<br> Jacobian VolAxiSphShell{0.95*infiniteBoundaryInnerRadius, 1.05*infiniteBoundaryOuterRadius};<br> }<br> {<br> Region All;<br> Jacobian VolAxi;<br> }<br> }<br> }</div><div><br></div><div>Correct -> {Name computedCoilSurface; Value{Integral {[1]; In inductorDomain; Jacobian jacobianNDRegionZ; Integration basicIntegration;}}}<br></div><div>Wrong -> {Name computedCoilSurface; Value{Integral {[1]; In inductorDomain; Jacobian jacobianNDRegion; Integration basicIntegration;}}}</div><div><br></div><div>In formulation:</div><div><br></div><div>{<br> Name potentialVectorFormulation;<br> Type FemEquation;<br> Quantity<br> {<br> {<br> Name A;<br> Type Local;<br> NameOfSpace potentialVectorFunctionSpace;<br> }<br> {<br> Name Je;<br> Type Local;<br> NameOfSpace sourceFunctionSpace;<br> }<br> }<br> Equation<br> {<br> Galerkin // magnetic solution domain (entire domain)<br> { <br> [nu[]*Dof{Curl A}, {Curl A}];<br> In electromagneticSolutionDomain;<br> Jacobian jacobianNDRegion;<br> Integration basicIntegration;<br> }<br> Galerkin // Induction in inductor domain<br> {<br> DtDof[sigma[Dt[{A}], {Curl A}]*Dof{A}, {A}];<br> In inductorDomain;<br> Jacobian jacobianNDRegion;<br> Integration basicIntegration;<br> }<br> Galerkin // Inductor domain (conductors)<br> {<br> [-Dof{Je}, {A}];<br> In inductorDomain;<br> Jacobian jacobianNDRegion; // or Jacobian jacobianNDRegionZ; does not seem to affect result<br> Integration basicIntegration;<br> }<br> }<br> }<br></div><div><br></div><div>Best,<br></div><div><br></div><div><br></div><div>Frederic<br></div></div></body></html>