<html><head><meta http-equiv="Content-Type" content="text/html charset=iso-8859-1"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;">Dear GetDP users & developers,<div><br></div><div>I was expecting to get the (Helmholtz) 2D Green function (i.e. exactly i/4 H_0^1(k_0 r)) by solving \laplacian E + k0^2 E=\delta in GetDP.</div><div>It seems that my vertex delta condition does not work properly.</div><div><br></div><div>My formulation (also attached .geo and .pro) looks like:</div><div><br></div><div><div><font face="Courier New">FunctionSpace {</font></div><div><font face="Courier New"> { Name Hgrad; Type Form1P;</font></div><div><font face="Courier New"> BasisFunction {</font></div><div><font face="Courier New"> { Name sn; NameOfCoef un; Function BF_PerpendicularEdge_1N; Support Omega; Entity NodesOf[Omega]; }</font></div><div><font face="Courier New"> { Name sn2; NameOfCoef un2; Function BF_PerpendicularEdge_2E; Support Omega; Entity EdgesOf[Omega]; }</font></div><div><font face="Courier New"> }</font></div><div><font face="Courier New"> Constraint {</font></div><div><font face="Courier New"> }</font></div><div><font face="Courier New"> }</font></div><div><font face="Courier New">}</font></div><div><font face="Courier New">Formulation {</font></div><div><font face="Courier New"> {</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>Name helmoltz_scalar; Type FemEquation;</font></div><div><font face="Courier New"> <span class="Apple-tab-span" style="white-space: pre;"> </span>Quantity {</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>Name u; Type Local; NameOfSpace Hgrad;}</font></div><div><font face="Courier New"> }</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>Equation {</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>Galerkin { [k0^2*epsilonr[] * Dof{u},{u} ];</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span> In Omega; Jacobian JVol; Integration Int_1; }</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>Galerkin {[-1/mur[] *Dof{Curl u} , {Curl u}];</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span> In Omega; Jacobian JVol; Integration Int_1; }</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>Galerkin { [Vector[0., 0., -1] , {u}];</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span> In Source_point; Jacobian JLin; Integration Int_1; }</font></div><div><font face="Courier New"><span class="Apple-tab-span" style="white-space:pre"> </span>} </font></div><div><font face="Courier New"> }</font></div><div><font face="Courier New">}</font></div></div><div><font face="Courier New"><br></font></div><div><br></div><div>Would you have any insight?</div><div><br></div><div>Many thanks!</div><div><br></div><div>Guillaume Demésy</div><div></div></body></html>