<html dir="ltr">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style>@font-face {
font-family: Cambria Math;
}
@font-face {
font-family: Calibri;
}
@font-face {
font-family: Tahoma;
}
@page WordSection1 {margin: 70.85pt 70.85pt 2.0cm 70.85pt; }
P.MsoNormal {
MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman","serif"; FONT-SIZE: 12pt
}
LI.MsoNormal {
MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman","serif"; FONT-SIZE: 12pt
}
DIV.MsoNormal {
MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman","serif"; FONT-SIZE: 12pt
}
A:link {
COLOR: blue; TEXT-DECORATION: underline
}
SPAN.MsoHyperlink {
COLOR: blue; TEXT-DECORATION: underline
}
A:visited {
COLOR: purple; TEXT-DECORATION: underline
}
SPAN.MsoHyperlinkFollowed {
COLOR: purple; TEXT-DECORATION: underline
}
P.msochpdefault {
MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman","serif"; FONT-SIZE: 10pt
}
LI.msochpdefault {
MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman","serif"; FONT-SIZE: 10pt
}
DIV.msochpdefault {
MARGIN: 0cm 0cm 0pt; FONT-FAMILY: "Times New Roman","serif"; FONT-SIZE: 10pt
}
SPAN.e-mailformatvorlage18 {
FONT-FAMILY: "Calibri","sans-serif"; COLOR: #1f497d
}
SPAN.E-MailFormatvorlage20 {
FONT-FAMILY: "Calibri","sans-serif"; COLOR: #1f497d
}
.msochpdefault {
FONT-SIZE: 10pt
}
</style><style id="owaParaStyle">P {
MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
</style>
</head>
<body lang="DE" vlink="purple" link="blue" fPStyle="1" ocsi="0">
<div style="direction: ltr;font-family: Tahoma;color: #000000;font-size: 10pt;">
<p>Thank you again for your response.</p>
<p> </p>
<p>I have tried to take the derivative manually in the function block and it still doesn't seem to work. Here below I show two ways I've used to take the derivative of the magnetic flux density with respect to time (dBdt[Ir]). As you can see, in the first attempt
I used the Dt function provided by GetDp, as that wouldn't work in my second attempt I used the $Dtime function, as advised before. </p>
<p> </p>
<p>Function{<br>
.</p>
<p> .</p>
<p> .</p>
<p><br>
mu_non[Ir] = InterpolationAkima[$1]{ListAlt[h_mat2, mu_mat2]};<br>
B[Ir] = InterpolationAkima[$1]{ListAlt[h_mat2, b_mat2]};</p>
<p><br>
<strong> dBdt[Ir] = Dt[B[$1]]; </strong></p>
<p><strong> dBdt[Ir] = (B[$1] - B[AtAnteriorTimeStep[$1,1]])/$DTime;</strong><br>
</p>
<p> dmudh [Ir] = dInterpolationAkima[$1]{ListAlt[h_mat2, mu_mat2]}; <br>
dbdh [Ir] = mu_non[$1]+Norm[$1]*dmudh[$1];</p>
<p> </p>
<p> .</p>
<p> .</p>
<p> . <br>
}</p>
<p> </p>
<p> </p>
<p>Formulation {</p>
<p> .</p>
<p> . </p>
<p> . <br>
}</p>
<p><br>
Equation {</p>
<p> </p>
<p> Galerkin { [ 1/sig[]* Dof{Curl H} , {Curl H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; } </p>
<p><strong> Galerkin { [ dBdt[{H}] , {H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; }<br>
</strong> Galerkin { JacNL [dbdh[{H}] * Dof{H} , {H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; }<br>
}<br>
} <br>
}</p>
<p> </p>
<p>Any ideas of why this may not be working? </p>
<p> </p>
<p>Best Regards,</p>
<p> </p>
<p>Jonathan<br>
</p>
<div style="FONT-FAMILY: Times New Roman; COLOR: #000000; FONT-SIZE: 16px">
<hr tabindex="-1">
<div style="DIRECTION: ltr" id="divRpF912711"><font color="#000000" size="2" face="Tahoma"><b>From:</b> michael.asam@infineon.com [michael.asam@infineon.com]<br>
<b>Sent:</b> Monday, October 15, 2012 12:07 PM<br>
<b>To:</b> Velasco Alvarado Jonathan; getdp@geuz.org<br>
<b>Subject:</b> RE: Time-dependent non-linear problem and time derivatives<br>
</font><br>
</div>
<div></div>
<div>
<div class="WordSection1">
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Hi John,</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">I think the missing Dt implementation is not the root cause for the not working B formulation.</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">GetDP uses DtDof instead which will deliver a result (in your case probably the wrong one).</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">The calculation of the time derivative in a function could be done by using there the function
</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Dt (see manual page 16) or you can calculate it manually by using the variable $DTime (page 21).</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">The main problem is that you give the Dof as an argument to a function: B[Dof{H}].</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">I think, this is not allowed. (Otherwise you could build nonlinear Galerkin equations ...)</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Instead you should give H from the last iteration to the function: B[{H}].</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Dof{H} means the unknown values of H you are looking for in the actual iteration</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">in contrast to {H}, which represents the known values from the last nonlinear iteration.</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">(Have a look in your first formulation where the usage of {H} and Dof{H} is correct.)</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Cheers</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Michael</span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US"></span> </p>
<div>
<div style="BORDER-BOTTOM: medium none; BORDER-LEFT: medium none; PADDING-BOTTOM: 0cm; PADDING-LEFT: 0cm; PADDING-RIGHT: 0cm; BORDER-TOP: #b5c4df 1pt solid; BORDER-RIGHT: medium none; PADDING-TOP: 3pt">
<p class="MsoNormal"><b><span style="FONT-FAMILY: 'Tahoma','sans-serif'; FONT-SIZE: 10pt" lang="EN-US">From:</span></b><span style="FONT-FAMILY: 'Tahoma','sans-serif'; FONT-SIZE: 10pt" lang="EN-US"> Velasco Alvarado Jonathan [mailto:jonathan.velasco@aalto.fi]
<br>
<b>Sent:</b> Monday, October 15, 2012 9:34 AM<br>
<b>To:</b> Asam Michael (IFAG ATV BP PD 1 M1); getdp@geuz.org<br>
<b>Subject:</b> RE: Time-dependent non-linear problem and time derivatives</span></p>
</div>
</div>
<p class="MsoNormal"><span lang="EN-US"></span> </p>
<div>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Hi Michael,</span></p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Thanks for your prompt reply. I am actually interpolating B for each calculated value of H with my own measured data and I am building my Jacobian matrix using the JacNL function.
The derivatives have been carried the way you've mentioned, as an external calculation in the Function field by applying the dAkimaInterpolation scheme. The first formulation (using permeability) gives me reasonable results. The formulation with B doesn't
work though still. The fact that Dt has not been implemented might be the reason. How can the time derivative calculated in the Function block?
</span></p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Best Regards,</span></p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Jonathan</span></p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"></span> </p>
<div>
<div style="TEXT-ALIGN: center" class="MsoNormal" align="center"><span style="COLOR: black">
<hr align="center" size="2" width="100%">
</span></div>
<div id="divRpF176225">
<p style="MARGIN-BOTTOM: 12pt" class="MsoNormal"><b><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">From:</span></b><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"> michael.asam@infineon.com [michael.asam@infineon.com]<br>
<b>Sent:</b> Monday, October 15, 2012 9:57 AM<br>
<b>To:</b> Velasco Alvarado Jonathan; getdp@geuz.org<br>
<b>Subject:</b> RE: Time-dependent non-linear problem and time derivatives</span><span style="COLOR: black"></span></p>
</div>
<div>
<div>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Hi John,</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">regarding the first formulation:</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">The term-op-type Dt is actually not implemented. GetDP uses DtDof instead, which is</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">in many cases wrong. The newest version (nightly build) gives here now a warning.</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">You can overcome this problem when you calculate the time derivative of the complete</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">(nonlinear) expression in a separate function (located in the Function{ ... } block).
</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Regarding the 2<sup>nd</sup> formulation with B:</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">The Galerkin equation has to be linear with respect to the Dof, which is not the case</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">here. You have to linearize it, either with functional iterations (Picard iteration)</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">or with Newton’s method.</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Please have a look in the reference manual at page 22, chapter 4.10 Fields -> Dof.</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Best regards,</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="FONT-FAMILY: 'Calibri','sans-serif'; COLOR: #1f497d; FONT-SIZE: 11pt" lang="EN-US">Michael</span><span style="COLOR: black"></span></p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<div>
<div style="BORDER-BOTTOM: medium none; BORDER-LEFT: medium none; PADDING-BOTTOM: 0cm; PADDING-LEFT: 0cm; PADDING-RIGHT: 0cm; BORDER-TOP: #b5c4df 1pt solid; BORDER-RIGHT: medium none; PADDING-TOP: 3pt">
<p class="MsoNormal"><b><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">From:</span></b><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt"> getdp-bounces@ace20.montefiore.ulg.ac.be [mailto:getdp-bounces@ace20.montefiore.ulg.ac.be]
<b>On Behalf Of </b>Velasco Alvarado Jonathan<br>
<b>Sent:</b> Friday, October 12, 2012 3:29 PM<br>
<b>To:</b> getdp@geuz.org<br>
<b>Subject:</b> [Getdp] Time-dependent non-linear problem and time derivatives</span><span style="COLOR: black"></span></p>
</div>
</div>
<p class="MsoNormal"><span style="COLOR: black"></span> </p>
<div>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Hello everyone,</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">I am currently working on a time-dependent non-linear magnetodynamic case. The permeability is my non-linear term but I don't want it to be included in my calculations for simplicity.
For this reason, I am using the flux density instead of permeability times field strength (B = mu*H). I am currently using this formulation (T-ohm) and it seems to work:</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Galerkin { Dt[ mu_non[{H}]*Dof{H} , {H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; }<br>
Galerkin { [ 1/sig[]* Dof{Curl H} , {Curl H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; }</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">However, if I substitute B into my equation:
</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">Galerkin { Dt[ B[Dof{H}] , {H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; }<br>
Galerkin { [ 1/sig[* Dof{Curl H} , {Curl H}] ; In Stack ; Jacobian JMat ; Integration GaussIntegration ; }</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">It doesn't seem to do anything. I was wondering if there is a way to take the time derivative of my non-linear term in terms of a magnetic flux density as shown above.
</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">BR,
</span><span style="COLOR: black"></span></p>
<p><span style="COLOR: black"></span> </p>
<p><span style="FONT-FAMILY: 'Tahoma','sans-serif'; COLOR: black; FONT-SIZE: 10pt">John</span><span style="COLOR: black"></span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>