<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="Generator" content="Microsoft Word 14 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:Tahoma;
panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-reply;
font-family:"Calibri","sans-serif";
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri","sans-serif";
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:3.0cm 2.0cm 3.0cm 2.0cm;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="DA" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D">Hi John<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D">The Neumann (von Neumann is a different mathematician) boundary condition fixes the ‘influx’ grad(V) normal to the boundary, and it arises when
grad(V) = -E is known and can be replaced by a function, such as Eimposed. A dirichlet boundary condition, e.g. V=0, fixes the magnitude.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D">Be aware that in the formulation the ‘Eimposed’ is the normal component of the incoming field/flux and it is thus a scalar not a vector.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D">KR Lars<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span style="font-size:10.0pt;font-family:"Tahoma","sans-serif"">Fra:</span></b><span style="font-size:10.0pt;font-family:"Tahoma","sans-serif""> getdp-bounces@ace20.montefiore.ulg.ac.be [mailto:getdp-bounces@ace20.montefiore.ulg.ac.be]
<b>På vegne af </b>John_V<br>
<b>Sendt:</b> 3. august 2011 14:21<br>
<b>Til:</b> getdp@geuz.org<br>
<b>Emne:</b> [Getdp] Von Neumann misconception?<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal" style="margin-bottom:12.0pt">Consider an electrostatic problem in a cylindrical volume, bottom end cap (surface) constrained to V=0, source terms in some volume elements, and top end cap with a von Neumann constraint implemented as shown
in the formulation below. Does the 3rd Galerkin term (the von Neumann term)<o:p></o:p></p>
<div style="margin-left:30.0pt">
<p class="MsoNormal">a) Require that the electric field through the upper end cap be equal to Eimposed?<br>
b) Require that the electric field through the upper end cap be equal to the sum: field produced by charges in SourceDomain + Eimposed?<br>
c) Something else?<o:p></o:p></p>
</div>
<p class="MsoNormal" style="margin-bottom:12.0pt"><br>
Formulation { <br>
{ Name Electrostatics_v; Type FemEquation;<br>
Quantity {<br>
{ Name v; Type Local; NameOfSpace Hgrad_v_Ele; }<br>
}<br>
Equation {<br>
Galerkin { [ epsr[] * Dof{d v} , {d v} ]; In Domain_Ele; <br>
Jacobian Vol; Integration GradGrad; }<br>
Galerkin { [ -q[]*chargeUnit/eps0/ElementVol[] , {v} ]; In SourceDomain; <br>
Jacobian Vol; Integration GradGrad; }<br>
Galerkin { [ Eimposed , {v} ]; In UpperEndCap; <br>
Jacobian Sur; Integration GradGrad; }<br>
}<br>
}<br>
}<br>
<br>
The mesh is a cylindrical volume oriented along z. Domain_Ele refers to all volume elements of my mesh. SourceDomain is a set of volume elements in which there are charges. (These are near the lower end cap of the cylindrical mesh.) The 3rd term was meant to
impose my von Neumann condition. When I wrote it I thought I was doing (a) above, but the result suggests otherwise.
<br>
<br>
John<o:p></o:p></p>
</div>
</body>
</html>