<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML//EN">
<HTML>
<HEAD>
<META content=text/html;charset=iso-8859-1 http-equiv=Content-Type>
<META content='"MSHTML 4.72.3110.7"' name=GENERATOR>
</HEAD>
<BODY bgColor=#ffffff>
<DIV><FONT color=#000000 size=2>Hello,</FONT></DIV>
<DIV><FONT color=#000000 size=2></FONT> </DIV>
<DIV> </DIV>
<DIV><FONT size=2>Some features make the use of postprocessing with eigenvalues
(using Lanczos algorithm) difficult.</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT size=2>1) Eigenvectors are stored as a time sequence as if it was the
solution of a transient problem, real part of the 1st eigenv., imaginary part of
the 1st eigenv., real part of the 2nd eigenv., etc. : How is it possible to
access real part together with imaginary part in the postpro ? Are other time
steps visible ? For instance, how can you get the complex Poynting which is the
cross product of the electric field by the complex conjugate of the magnetic
field ?</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT size=2>2) The eigenvectors are known up to an arbitrary scalar factor
(different for each eigenv.). Could it be possible to add a normation facility
e.g. fixing L2 norm to 1 or max norm to 1 options ? This could be a great help
in visualisation !</FONT></DIV>
<DIV><FONT size=2></FONT> </DIV>
<DIV><FONT size=2>3) How can you recuperate the corresponding eigenvalue in the
post pro ?</FONT></DIV>
<DIV> </DIV>
<DIV><FONT color=#000000 size=2>Regards</FONT></DIV>
<DIV> </DIV>
<DIV> </DIV>
<DIV><FONT color=#000000
size=2>********************************************<BR>Prof. André
Nicolet<BR>Université d'Aix-Marseille III<BR>Dom. Univ. de
Saint-Jérôme<BR>Service 162 <BR>Institut Fresnel (UMR
6133)<BR>Avenue Escadrille Normandie-Niemen<BR>F-13397 Marseille cedex
20<BR>France<BR>tel +33 4 91 28 87 73<BR>fax +33 4 91 28 88 80<BR>secr +33 4 91
28 83 76<BR><A
href="mailto:andre.nicolet@fresnel.fr">mailto:andre.nicolet@fresnel.fr</A><BR>********************************************</FONT></DIV></BODY></HTML>