[Getdp] Coupling Analysis (Thermo MagDyn)

ABE Hiroshi habe36 at gmail.com
Thu Oct 19 02:55:05 CEST 2017


Dear Prof. Sabariego and All,

Thank you and I apology my mistake that should be avoided.

I changed the mistake and have confirmed.
As the pictures attatched in this mail, the results are almost same.
Thank you so much.

The diff file to the original indheat.pro is:

325c325,326
<       { Name h; Type Local; NameOfSpace HSpace; }
---
>       { Name a; Type Local; NameOfSpace ASpace; }
>       { Name e; Type Local; NameOfSpace ESpace; }
333c334
<       Galerkin { [ -0.5/sigma[]*<h>[Re[{d h}]*Re[{d h}] + Im[{d h}]*Im[{d h}]], {t} ];
---
>       Galerkin { [ -0.5*sigma[]*<a>[ SquNorm[Dt[{a}]+{e}]], {t} ];
378c379
<       { Name A; NameOfFormulation MagDynTO;
---
>       { Name A; NameOfFormulation MagDynAV;
478,479c479,480
<       { Name p; Value{ Local{ [ 1./sigma[]*( Re[{d h}]*Re[{d h}] + Im[{d h}]*Im[{d h}] ) ] ;
<             In Omega_c2; Jacobian Vol; } } }
---
>       { Name p; Value{ Local{ [  sigma[]*<a>[ SquNorm[(Dt[{a}]+{e})] ] ]  ;
> 	    In Omega_c2; Jacobian Vol; } } }


Best Regards,


2017/10/19 4:10、Ruth Vazquez Sabariego <ruth.sabariego at kuleuven.be> のメール:

> Dear ABE Hiroshi, 
> 
> In the term you have written:
>> Galerkin { [ -0.5/sigma[]*<a>[ Re[Dt[-{a}]+{e}]*Re[Dt[-{a}]+{e}] + Im[Dt[-{a}]+{e}]*Im[Dt[-{a}]+{e}]], {t} ];
> 
> 
> I think you have a sign error as: 
> j= -sigma*(Dt[a]+{e})
> 
> With regard to your questions:
> 1) it is not necessary to indicate the two quantities in between <>, it will work with complex arithmetic in what follows between [].
> 2) in complex arithmetic, Dt[] implies => 1i*2*pi*freq*{a}; and that’s what should be used.
> 
> The correct term should be:
> 
> Galerkin { [ -0.5*sigma[]* <a>[ Re[Dt[{a}]+{e}] ]*Re[Dt[{a}]+{e}] ]+Im[Dt[{a}]+{e}] ]*Im[Dt[{a}]+{e}] ] , {t} ];
>          In Omega_c2; Integration Int; Jacobian Vol;  }
> 
> or in a more compact form:
> Galerkin { [ -0.5*sigma[]* <a>[ SquNorm[Dt[{a}]+{e}] ], {t} ];
>          In Omega_c2; Integration Int; Jacobian Vol;  }
> 
> Best regards, 
> Ruth
> 
> 
>> Prof. Ruth V. Sabariego
> KU Leuven  
> Dept. Electrical Engineering ESAT/Electa, EnergyVille
> http://www.esat.kuleuven.be/electa
> http://www.energyville.be
> 
> Free software: http://gmsh.info | http://getdp.info | http://onelab.info
> 
> 
> 
> 
> 
> 
> 
>> On 18 Oct 2017, at 16:14, ABE Hiroshi <habe36 at gmail.com> wrote:
>> 
>> Dear Prof. Sabariego and All,
>> 
>> I looked into the new indheat.pro benchmark and change several lines to use AV formulation, MagDynAV formulation.
>> 
>> The diff file is this.
>> 
>> 325c325,326
>> <       { Name h; Type Local; NameOfSpace HSpace; }
>> ---
>> >       { Name a; Type Local; NameOfSpace ASpace; }
>> >       { Name e; Type Local; NameOfSpace ESpace; }
>> 333c334
>> <       Galerkin { [ -0.5/sigma[]*<h>[Re[{d h}]*Re[{d h}] + Im[{d h}]*Im[{d h}]], {t} ];
>> ---
>> >       Galerkin { [ -0.5/sigma[]*<a>[Re[Dt[-{a}]+{e}]*Re[Dt[-{a}]+{e}] + Im[Dt[-{a}]+{e}]*Im[Dt[-{a}]+{e}]], {t} ];
>> 378c379
>> <       { Name A; NameOfFormulation MagDynTO;
>> ---
>> >       { Name A; NameOfFormulation MagDynAV;
>> 478c479
>> <       { Name p; Value{ Local{ [ 1./sigma[]*( Re[{d h}]*Re[{d h}] + Im[{d h}]*Im[{d h}] ) ] ;
>> ---
>> >       { Name p; Value{ Local{ [ -0.5/sigma[]*<a>[Re[Dt[-{a}]+{e}]*Re[Dt[-{a}]+{e}] + Im[Dt[-{a}]+{e}]*Im[Dt[-{a}]+{e}]] ] ;
>> 
>> The simulation results are very different from the original TO formulation.
>> My concerning points are
>>  * In AV formulation, “a" and “e" are both complex numbers so <a>[] should be something like <a,e>[].
>>  * The operator “Dt” would work as expected in the TheDyn formulation, it is transient formulation.
>> 
>> I tried <a,e>[], but this causes a syntax error.
>> I have a feeling I am closing to my goal. I appreciate your kind helps.
>> Thank you very much in advance.
>> 
>> Best Regards,
>> 
>> 
>> 2017/10/18 0:04、Ruth Vazquez Sabariego <ruth.sabariego at kuleuven.be> のメール:
>> 
>>> Dear ABE Hiroshi, 
>>> 
>>> Using the T-O or the A-V formulation is just a choice, that most of the time depends on the data we have. 
>>> Refining the mesh, you should observe convergence of the results.
>>> 
>>> As you’ve done, the coupling between the EM and the thermal problem is done via the Joule losses. 
>>> These losses are calculated from the frequency domain solution (steady state) of the AV-formulation, and therefore they are an average value.
>>> The thermal problem is then solve in the time domain. This is possible thanks to the difference in time constants of both problems. 
>>> 
>>> The coupling term can be written as:
>>> 
>>> Galerkin { [ -0.5*sigma[] *<a>[ SquNorm[Dt[{a}]+{d v}] ], {t} ];
>>>         In DomainC; Integration II; Jacobian Vol;  }
>>> 
>>> where <a> indicates that the operation between square brackets is to be done with complex numbers even if the thermal formulation is real.
>>> 
>>> This term is exactly the same as yours (with a factor 0.5, that I think is missing, to check!) if you also indicate there that the quantities are complex, i.e.
>>>> Galerkin { [ -1./sigma[]*( <a>[ 
>>>>     Re[-(Dt[{a}]+{d v})]*
>>>>     Re[-(Dt[{a}]+{d v})]+
>>>>     Im[-(Dt[{a}]+{d v})]*
>>>>     Im[-(Dt[{a}]+{d v})]] ), {t} ];
>>>> In DomainC; Integration II; Jacobian Vol; }
>>> 
>>> 
>>> If you do not indicate that the quantities are complex, the imaginary part is disregarded in the time domain thermal formulation. 
>>> 
>>> Regards, 
>>> Ruth
>>> 
>>> PS: I am correcting the formulation in the benchmarks. 
>>> 
>>> 
>>>>>> Prof. Ruth V. Sabariego
>>> KU Leuven  
>>> Dept. Electrical Engineering ESAT/Electa, EnergyVille
>>> http://www.esat.kuleuven.be/electa
>>> http://www.energyville.be
>>> 
>>> Free software: http://gmsh.info | http://getdp.info | http://onelab.info
>>> 
>>> 
>>> 
>>> 
>>> 
>>> 
>>> 
>>>> On 17 Oct 2017, at 11:04, ABE Hiroshi <habe36 at gmail.com> wrote:
>>>> 
>>>> Dear All,
>>>> 
>>>> I am working on a coupling analysis of magnetodynamics and thermal dynamics. Referring to  “indheat” sample, I build a model.
>>>> It uses A-V formulation regarding Magnetodynamics, and I would like to couple the electric current in the thermal formulation.
>>>> 
>>>> They are:
>>>> 
>>>> Formulation {
>>>> 
>>>>  { Name MagStaDyn_av_js0_3D ; Type FemEquation ;
>>>>    Quantity {
>>>>      { Name a  ; Type Local ; NameOfSpace HSpace ; }
>>>>      { Name v  ; Type Local ; NameOfSpace USpace ; }
>>>>    }
>>>> 
>>>>    Equation {
>>>>      Galerkin { [ nu[] * Dof{d a} , {d a} ] ;
>>>>        In Domain ; Jacobian Vol ; Integration II ; }
>>>>      Galerkin { DtDof[ sigma[] * Dof{a} , {a} ] ;
>>>>        In DomainC ; Jacobian Vol ; Integration II ; }
>>>>      Galerkin { [ sigma[] * Dof{d v} , {a} ] ;
>>>>        In DomainC ; Jacobian Vol ; Integration II ; }
>>>> 
>>>>      Galerkin { [ -js0[], {a} ] ;
>>>>        In  DomainS ; Jacobian Vol ; Integration II ; }
>>>> 
>>>> 
>>>>      Galerkin{ DtDof[ sigma[] * Dof{a}, {d v} ] ;
>>>> In DomainC ; Jacobian Vol ; Integration II ; }
>>>>      Galerkin{ [ sigma[] * Dof{d v} , {d v} ] ;
>>>> In DomainC ; Jacobian Vol ; Integration II ; }
>>>> 
>>>>    }
>>>>  }
>>>> 
>>>>  { Name Thermal; Type FemEquation;
>>>>    Quantity {
>>>>      { Name t; Type Local; NameOfSpace TSpace; }
>>>>      { Name a; Type Local; NameOfSpace HSpace; }
>>>>      { Name v; Type Local; NameOfSpace USpace; }
>>>>    }
>>>>    Equation {
>>>>      Galerkin { [ K[] * Dof{d t}, {d t} ];
>>>> In DomainC; Integration II; Jacobian Vol; }
>>>>      Galerkin { DtDof [ rho[]*Cp[] * Dof{t}, {t} ];
>>>> In DomainC; Integration II; Jacobian Vol; }
>>>>      Galerkin { [ -1./sigma[]*( 
>>>>    Re[-(Dt[{a}]+{d v})]*
>>>>    Re[-(Dt[{a}]+{d v})]+
>>>>    Im[-(Dt[{a}]+{d v})]*
>>>>    Im[-(Dt[{a}]+{d v})]), {t} ];
>>>> In DomainC; Integration II; Jacobian Vol; }
>>>> 
>>>>      Galerkin { [ Ht[]*Dof{t}, {t} ];
>>>> In Skin_ECore; Jacobian Sur ; Integration II ; }
>>>>      Galerkin { [-Ht[]*Tamb[], {t} ];
>>>> In Skin_ECore; Jacobian Sur ; Integration II ; }
>>>>      Galerkin { [ sigma_sb*Ep[]*(Dof{t})^4, {t} ];
>>>> In Skin_ECore; Jacobian Sur ; Integration II ; }
>>>>      Galerkin { [ -sigma_sb*Ep[]*(Tamb[])^4, {t} ];
>>>> In Skin_ECore; Jacobian Sur ; Integration II ; }
>>>> 
>>>>    }
>>>>  }
>>>> }
>>>> 
>>>> The MagStaDyn_av_js0_3D formulation gives a resonable solution but Thermal gives weird results.
>>>> 
>>>> I know the “indheat” example uses T-O formulation for coupling analysis. Are there any reasons to take T-O formulation instead of A-V formulation?
>>>> Any ways for A-V formulation?
>>>> 
>>>> Thank you so much.
>>>> 
>>>> Best,
>>>> 
>>>> ABE Hiroshi
>>>> from Tokorozawa, JAPAN
>>>> 
>>>> 
>>>> _______________________________________________
>>>> getdp mailing list
>>>> getdp at onelab.info
>>>> http://onelab.info/mailman/listinfo/getdp
>>> 
>> 
>> ABE Hiroshi
>>  from Tokorozawa, JAPAN
>> 
>> _______________________________________________
>> getdp mailing list
>> getdp at onelab.info
>> http://onelab.info/mailman/listinfo/getdp
> 

ABE Hiroshi
 from Tokorozawa, JAPAN

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://onelab.info/pipermail/getdp/attachments/20171019/b8cb0804/attachment-0001.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: indheat_orig_t20.png
Type: image/png
Size: 45084 bytes
Desc: not available
URL: <http://onelab.info/pipermail/getdp/attachments/20171019/b8cb0804/attachment-0002.png>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: indheat_orig_t20.png
Type: image/png
Size: 45084 bytes
Desc: not available
URL: <http://onelab.info/pipermail/getdp/attachments/20171019/b8cb0804/attachment-0003.png>


More information about the getdp mailing list