[Getdp] [solve] Segmentation fault (core dumped)
Peter Kis
md2z34 at gmail.com
Fri Aug 7 00:27:22 CEST 2015
Dear List Members,
I am at the very beginning of learning how to use getdp. In fact I bumped
into a problem at my first model, which is about an axisymmetric 2D coil in
time domain. I use vector potential formalism with excitation current
perpendicular to the plane. Therefore this is a nodal FEM problem because
the vector potential has only phi component as the current density.
I did my best to tackle this problem but something is wrong with my *.pro
file. However the example files run well.
I use getdp version 2.6.1 64 bit on Linux and get this message:
getdp coil.pro -solve '#1' -pos '#1' -msh coil.msh
Info : Running 'getdp coil.pro -solve #1 -pos #1 -msh coil.msh' [GetDP
2.6.1, 1 node]
Info : Started (Fri Aug 7 00:13:51 2015, CPU = 0.076s, Mem = 255.719Mb)
Info : Initializing Gmsh
Info : Loading problem definition 'coil.pro'
Info : Loading problem definition 'param.geo'
Info : Selected Resolution 'Solution'
Info : Loading Geometric data 'coil.msh'
Info : System 'Syst' : Real
P r e - P r o c e s s i n g . . .
Info : Treatment Formulation 'VectorPotentialFormulation'
make: *** [solve] Segmentation fault (core dumped)
Could you take a look at my project file what's wrong with it? This is
really my very first project in getDP. So any clue is welcome.
Thank you for your help in advance.
Peter
-----------
coil.pro:
------------
// coil.pro: weak formulation
Include "param.geo";
Group{ // OK
Omega_air = Region[{Omega_air}];
Omega_coil = Region[{Omega_coil}];
Omega = Region[ All ];
Gama_D = Region[{Gama_D}]; // Dirichlet for A=0
}
Function{ // OK
InitialState[Omega] = 0.;
mu0 = 4e-7*Pi;
Freq = 50;
t0 = 0;
tmax = 2.;
dt = 0.1;
theta = 1.; // backward Euler
source_current_t = {0, 1, 2};
source_current_j = {0, 1, 1};
Js[] = InterpolationLinear[$1]{ListAlt[source_current_t,
source_current_j]};
// Jext[] = Js[$Time];
Jext[] = 50*(1-Exp[-0.5*$Time]);
sigma[Omega_air] = 1;
sigma[Omega_coil] = 6e7;
}
Jacobian { // OK
{ Name JVol; // for 2D regions
Case {
{Region All; Jacobian VolAxi;}
}
}
{ Name JSur; // for 1D regions
Case {
{Region All; Jacobian SurAxi;}
}
}
}
Integration {
{ Name I1 ;
Case {
{ Type Gauss ;
Case {
{ GeoElement Point ; NumberOfPoints 1 ; }
{ GeoElement Line ; NumberOfPoints 4 ; }
{ GeoElement Triangle ; NumberOfPoints 6 ; }
{ GeoElement Quadrangle ; NumberOfPoints 7 ; }
{ GeoElement Tetrahedron ; NumberOfPoints 15 ; }
{ GeoElement Hexahedron ; NumberOfPoints 34 ; }
}
}
}
}
}
Constraint{ // OK
// Initial State
{Name InitialData; Type Init;
Case {
{Region Omega; Value InitialState[];}
}
}
// Dirichlet in Inf.
{Name DirichletBC; Type Assign;
Case {
{Region Gama_D; Value 0;}
}
}
// No constraint for the axis
}
FunctionSpace{ // OK
{ Name Afs; Type Form0;
BasisFunction{
{Name Ni; NameOfCoef Ai; Function BF_Node;
Support Omega; Entity NodesOf[All];}
}
Constraint {
{NameOfCoef Ai; EntityType NodesOf;
NameOfConstraint DirichletBC;}
{NameOfCoef Ai; EntityType NodesOf;
NameOfConstraint InitialData;}
}
}
}
Formulation{ // OK
{Name VectorPotentialFormulation; Type FemEquation;
Quantity{
{Name a; Type Local; NameOfSpace Afs;}
}
Equation{
Galerkin{ [1/mu0*Dof{Curl a},{Curl a}];
In Omega; Jacobian JVol; Integration I1;}
Galerkin{ DtDof[sigma[]*Dof{a},{a}];
In Omega; Jacobian JVol; Integration I1;}
Galerkin{ [-Jext[],{a}];
In Omega_coil; Jacobian JVol; Integration I1;}
}
}
}
Resolution{
{Name Solution;
System{
{Name Syst; NameOfFormulation VectorPotentialFormulation;}
}
Operation{
InitSolution[Syst];SaveSolution[Syst];
TimeLoopTheta[t0,tmax,dt,theta] {
Generate[Syst]; Solve[Syst]; SaveSolution[Syst];
}
}
}
}
PostProcessing{
{Name VectorPotentialPostProc; NameOfFormulation
VectorPotentialFormulation;
Quantity {
{Name vec_pot; Value {Local{[{a}];In Omega;Jacobian JVol;}}}
}
}
}
PostOperation{
{Name Map_Vectorpotential; NameOfPostProcessing VectorPotentialPostProc;
Operation{
Print[vec_pot, OnElementsOf Omega, File "A.pos"];
}
}
}
---------------------
param.geo
---------------------
// param.geo: the auxiliary file
// PhysicalIDs
Omega_coil = 700;
Omega_air = 1000;
Gama_D = 500;
// Geometry
r_enc = 60e-3;
z_enc = 40e-3;
inner_radius = 59e-3/2;
thick = 100e-6;
width = 4e-3;
// Mesh
lc_air = 0.008;
lc_coil = 0.5e-3;
---------------------
coil.geo
---------------------
// coil.geo: creation of the geometry with GMSH
//
Include "param.geo";
// Enclosure points
p1 = newp; Point(p1) = {0,-z_enc,0,lc_air};
p2 = newp; Point(p2) = {r_enc,-z_enc,0,lc_air};
p3 = newp; Point(p3) = {r_enc,z_enc,0,lc_air};
p4 = newp; Point(p4) = {0,z_enc,0,lc_air};
// First turn points
p5 = newp; Point(p5) = {inner_radius,-width/2,0,lc_coil};
p6 = newp; Point(p6) = {inner_radius,width/2,0,lc_coil};
p7 = newp; Point(p7) = {inner_radius+thick,width/2,0,lc_coil};
p8 = newp; Point(p8) = {inner_radius+thick,-width/2,0,lc_coil};
// Enclosure lines
L1 = newreg; Line(L1) = {p1,p2};
L2 = newreg; Line(L2) = {p2,p3};
L3 = newreg; Line(L3) = {p3,p4};
L4 = newreg; Line(L4) = {p4,p1};
// First turn lines
L5 = newreg; Line(L5) = {p5,p6};
L6 = newreg; Line(L6) = {p6,p7};
L7 = newreg; Line(L7) = {p7,p8};
L8 = newreg; Line(L8) = {p8,p5};
// Line loops
Bound = newreg; Line Loop(Bound) = {L1,L2,L3,L4};
Turn = newreg; Line Loop(Turn) = {L5,L6,L7,L8};
SurfaceOmega_air = newreg; Plane Surface(SurfaceOmega_air) = {Bound,Turn};
SurfaceOmega_coil = newreg; Plane Surface(SurfaceOmega_coil) = {Turn};
Physical Surface(Omega_air) = {SurfaceOmega_air};
Physical Surface(Omega_coil) = {SurfaceOmega_coil};
// For Dirichlet bnd cnd
Physical Line(Gama_D) = {L1,L2,L3};
Mesh.Algorithm = 1;
//Mesh.SurfaceFaces = 1;
//Mesh.SurfaceNumbers = 1;
//Mesh.LabelType = 2; // Show Phys ID
//Mesh 2;
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.geuz.org/pipermail/getdp/attachments/20150807/4323a98b/attachment-0001.html>