[Getdp] interpolation after remeshing
Thomas Jung
Thomas.Jung at iisb.fraunhofer.de
Thu Jul 12 10:43:16 CEST 2007
Wolf Goetze wrote:
> I am trying to model the growth of a crystal in solution by solving the
> diffusion equation. I modified the heat equation example I found in one of the
> posts in this list, and it works as far as I can tell. The complication is that
> the crystal changes shape. My algorithm is as follows: solve one timestep,
> evaluate grad rho averaged over the faces, move the faces a proportional amount,
> remesh, repeat. Now I noticed the OnGrid postprocessor should do what I want,
> but it returns all zeros on every element, even when given the same mesh. Any
> suggestions? Also how can I output this in a form that getdp can read back as an
> initial condition? And how do I evaluate the average normal gradient over a surface?
>
> Thanks in advance,
> Wolf Goetze
>
> ======
>
> Point(1) = {1,1,1,0.2};
> Point(2) = {1,1,-1,0.2};
> Point(3) = {1,-1,1,0.2};
> Point(4) = {-1,1,1,0.2};
> Point(5) = {1,-1,-1,0.2};
> Point(6) = {-1,1,-1,0.2};
> Point(7) = {-1,-1,1,0.2};
> Point(8) = {-1,-1,-1,0.2};
>
> Line(1) = {1,2};
> Line(2) = {1,3};
> Line(3) = {1,4};
> Line(4) = {2,5};
> Line(5) = {2,6};
> Line(6) = {3,5};
> Line(7) = {3,7};
> Line(8) = {4,6};
> Line(9) = {4,7};
> Line(10) = {5,8};
> Line(11) = {6,8};
> Line(12) = {7,8};
>
> Line Loop(13) = {1,4,-6,-2};
> Line Loop(14) = {1,5,-8,-3};
> Line Loop(15) = {2,7,-9,-3};
> Line Loop(16) = {-10,-4,5,11};
> Line Loop(17) = {-10,-6,7,12};
> Line Loop(18) = {-11,-8,9,12};
>
> Plane Surface(19) = {13};
> Plane Surface(20) = {14};
> Plane Surface(21) = {15};
> Plane Surface(22) = {16};
> Plane Surface(23) = {17};
> Plane Surface(24) = {18};
>
> Surface Loop(25) = {23,22,19,20,24,21};
>
> radius=6;
> radius2=8;
>
>
> Point(41) = {0, 0, 0, 1};
> Point(42) = {-radius, 0, 0, 1};
> Point(43) = {0, radius, 0, 1};
> Point(46) = {0, 0, radius, 1};
> Circle(21) = {42, 41, 43};
> Circle(25)= {46,41,42};
> Circle(26)= {46,41,43};
> Line Loop(50) = {21, -26, 25} ;
> Ruled Surface (60) = {50};
>
> Point(72) = {-radius2, 0, 0, 1.5};
> Point(73) = {0, radius2, 0, 1.5};
> Point(76) = {0, 0, radius2, 1.5};
> Circle(81) = {72, 41, 73};
> Circle(85)= {76,41,72};
> Circle(86)= {76,41,73};
> Line Loop(90) = {81, -86, 85} ;
> Ruled Surface (91) = {90};
>
> t1[] = Rotate {{0,0,1},{0,0,0},Pi/2} {Duplicata{Surface{60};}};
> t2[] = Rotate {{0,0,1},{0,0,0},Pi} {Duplicata{Surface{60};}};
> t3[] = Rotate {{0,0,1},{0,0,0},Pi/2*3} {Duplicata{Surface{60};}};
> t4[] = Rotate {{0,1,0},{0,0,0},-Pi/2} {Duplicata{Surface{60};}};
> t5[] = Rotate {{0,0,1},{0,0,0},Pi/2} {Duplicata{Surface{t4[0]};}};
> t6[] = Rotate {{0,0,1},{0,0,0},Pi} {Duplicata{Surface{t4[0]};}};
> t7[] = Rotate {{0,0,1},{0,0,0},Pi/2*3} {Duplicata{Surface{t4[0]};}};
>
> Surface Loop(100)={60,t1[0],t2[0],t3[0],t7[0],t4[0],t5[0],t6[0]};
>
> Volume(200)={25,100};
> Physical Volume(201)={200};
>
> t8[] = Rotate {{0,0,1},{0,0,0},Pi/2} {Duplicata{Surface{91};}};
> t9[] = Rotate {{0,0,1},{0,0,0},Pi} {Duplicata{Surface{91};}};
> t10[] = Rotate {{0,0,1},{0,0,0},Pi/2*3} {Duplicata{Surface{91};}};
> t11[] = Rotate {{0,1,0},{0,0,0},-Pi/2} {Duplicata{Surface{91};}};
> t12[] = Rotate {{0,0,1},{0,0,0},Pi/2} {Duplicata{Surface{t11[0]};}};
> t13[] = Rotate {{0,0,1},{0,0,0},Pi} {Duplicata{Surface{t11[0]};}};
> t14[] = Rotate {{0,0,1},{0,0,0},Pi/2*3} {Duplicata{Surface{t11[0]};}};
> Surface Loop(105)={91,t8[0],t9[0],t10[0],t11[0],t12[0],t13[0],t14[0]};
> Volume(202)={100,105};
> Physical Volume(203)={202};
>
> Physical Surface(299)={60,t8[0],t9[0],t10[0],t11[0],t12[0],t13[0],t14[0]};
> Physical Surface(300)={60,t1[0],t2[0],t3[0],t7[0],t4[0],t5[0],t6[0]};
>
> Physical Surface(301)={19};
> Physical Surface(302)={20};
> Physical Surface(303)={21};
> Physical Surface(304)={22};
> Physical Surface(305)={23};
> Physical Surface(306)={24};
>
> ======
>
> // --- Group -----------------------------------------------------------
> //
> Group {
> Sfca = Region[301];
> Sfcb = Region[302];
> Sfcc = Region[303];
> Sfcd = Region[304];
> Sfce = Region[305];
> Sfcf = Region[306];
> SfcO = Region[300];
> SfcI = Region[299];
> Vol = Region[201];
> VolI = Region[203];
>
> SfcC = Region[{Sfca,Sfcb,Sfcc,Sfcd,Sfce,Sfcf}];
> Dmn = Region[{SfcC,SfcO,SfcI,Vol,VolI}];
> }
> //
> // --- Function --------------------------------------------------------
> //
> Function {
> D = 1.0;
>
> InitTmp = 10.0;
>
> TmeStt = 0.0;
> TmeStp = 10.0;
> TmeDel = 1.0;
> }
> //
> // --- Constraint ------------------------------------------------------
> //
> Constraint {
> {Name TmpCst; Type Assign;
> Case {
> {Region Sfca; Type Assign; Value 1.0;}
> {Region Sfcb; Type Assign; Value 2.0;}
> {Region Sfcc; Type Assign; Value 3.0;}
> {Region Sfcd; Type Assign; Value 4.0;}
> {Region Sfce; Type Assign; Value 5.0;}
> {Region Sfcf; Type Assign; Value 6.0;}
> {Region Dmn; Type Init; Value InitTmp;}
> }
> }
> }
> //
> // --- Jacobian --------------------------------------------------------
> //
> Jacobian {
> {Name TmpJac;
> Case {
> {Region VolI; Jacobian VolSphShell {6.0,8.0};}
> {Region SfcC; Jacobian Sur;}
> {Region All; Jacobian Vol;}
> }
> }
> {Name SurJac;
> Case {
> {Region All; Jacobian Sur;}
> }
> }
> }
> //
> // --- Integration -----------------------------------------------------
> //
> Integration {
> {Name TmpInt;
> Case {
> {Type Gauss;
> Case {
> {GeoElement Point ; NumberOfPoints 1;}
> {GeoElement Line ; NumberOfPoints 3;}
> {GeoElement Triangle ; NumberOfPoints 4;}
> {GeoElement Quadrangle ; NumberOfPoints 4;}
> {GeoElement Tetrahedron; NumberOfPoints 4;}
> {GeoElement Hexahedron ; NumberOfPoints 6;}
> {GeoElement Prism ; NumberOfPoints 6;}
> }
> }
> }
> }
> }
> //
> // --- FunctionSpace ---------------------------------------------------
> //
> FunctionSpace {
> {Name TmpSpc; Type Form0;
> BasisFunction {
> {Name sn; NameOfCoef Tmpn; Function BF_Node; Support Dmn; Entity
> NodesOf[All];}
> }
> Constraint {
> {NameOfCoef Tmpn; EntityType NodesOf; NameOfConstraint TmpCst;}
> }
> }
> }
> //
> // --- Formulation -----------------------------------------------------
> //
> Formulation {
> {Name TmpFrm; Type FemEquation;
> Quantity {
> {Name Tmp; Type Local; NameOfSpace TmpSpc;}
> }
> Equation {
> Galerkin { [ D * Dof{d Tmp}, {d Tmp} ];
> In Dmn ; Integration TmpInt; Jacobian TmpJac;}
>
> Galerkin { Dt [ Dof{ Tmp}, {Tmp} ];
> In Dmn ; Integration TmpInt; Jacobian TmpJac;}
> }
> }
> }
> //
> // --- Resolution ------------------------------------------------------
> //
> Resolution {
> {Name TmpRes;
> System {
> {Name Tmp; NameOfFormulation TmpFrm;}
> }
> Operation {
> InitSolution[Tmp]; SaveSolution[Tmp];
> TimeLoopTheta[TmeStt,TmeStp,TmeDel,1.]
> {
> Generate[Tmp]; Solve[Tmp]; SaveSolution[Tmp];
> }
> }
> }
> }
> //
> // --- PostProcessing --------------------------------------------------
> //
> PostProcessing {
> {Name TmpPst; NameOfFormulation TmpFrm;
> Quantity {
> {Name Tmp; Value{ Local{[ {Tmp} ]; In Dmn; Jacobian TmpJac;} }}
> {Name GTmp; Value{ Local{[ D * {Grad Tmp} ]; In Dmn; Jacobian TmpJac;} }}
> }
> }
> }
> //
> // --- PostOperation ---------------------------------------------------
> //
> PostOperation {
> {Name TmpOps; NameOfPostProcessing TmpPst;
> Operation {
> Print[Tmp, OnGrid Dmn, TimeStep 1, File "Tmp_3D.pos"];
> }
> }
> {Name TmpGrad; NameOfPostProcessing TmpPst;
> Operation {
> Print[GTmp, OnPoint {1,0,0}, TimeStep 1, File "GTmp_3D.pos"];
> }
> }
> }
>
> _______________________________________________
> getdp mailing list
> getdp at geuz.org
> http://www.geuz.org/mailman/listinfo/getdp
>
>
Hi Wolfgang,
I think for your problem you should have a look www.OpenFOAM.co.uk
A great toolbox, moving mesh facilities, can do what you want to do out
of the box, and is also open source.
(of course, getdp is also fantastic stuff, but for this application, I
believe, not the best)